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1 Définition et rayon de convergence

1.1 Qu’est ce qu’une série entiere ?

[ Définition 1 — Série entiére ]
Soit (an)nen une suite de nombres réels ou complexes.

On appelle série entiére de la variable z € C la série de fonctions Z fnou, pour n € N, f: 2z +— apz™.

En pratique, on notera (abusivement) E a, 2" pour désigner une série entiére.

[ Exemple 2 — Série entiére ou pas ]

Lesquelles sont des séries entiéres parmi :

1

OECED SEELD SIS DRI DD SE TR

nn 2n’

1.2 Rayon de convergence

[ Proposition 3 — Lemme d’Abel J

Soit zg € C. Si la suite (anzg)n est bornée alors, pour tout nombre complexe z tel que |z| < |zp|, la série

E apz" est absolument convergente.

Démonstration. En notant M un majorant de (anz{),, on montre que |a,z"| < M|%|n et on conclut par

comparaison a une série géométrique convergente. d
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Définition 4 — Rayon de convergence }

On appelle rayon de convergence de la série entiere g a,z", le nombre réel ou infini :

= R<Z anZ") = sup{r € Ry | (a,r"), est bornée} € [0;+o0].

Remarque. En particulier, les séries E a, 2" et E lan|2z" ont méme rayon de convergence. Cela peut étre
utile pour se ramener & des coefficients réels (positifs).

Exemple 5 — Rayon de convergence de la série entiére Zzn. ’

1.3 Lien avec la convergence

[ Théoréeme 6 — Rayon de convergence et nature de la série }

1. Si|z| < R, alors la série » _ a,2" converge absolument.

2. Si |z| > R, alors la série E anz" diverge grossierement.

Démonstration. 1. Si |z| < R, considérer r = MTJFR et utiliser le lemme d’Abel.
2. Si |z| > R, utiliser la définition de R pour montrer que anz”%ﬁ(). Q
A
A
i >

DVG
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n n
Exemple 7 — Rayon de convergence de E x—' et de E ;—n
n!

—

Définition 8 — Disque ouvert et intervalle ouvert de convergence ]

Soit Z anz" une série entiere de rayon de convergence R.
L’intervalle réel |—R; R| est appelé intervalle ouvert de convergence.
L’ensemble {z € C | |z| < R} est appelé disque ouvert de convergence.

D’apres la proposition précédente, une série entiére converge absolument sur son intervalle / disque
ouvert de convergence. En revanche, tout peut se passer au bord, c’est-a-dire en un nombre z tel que
|z| = R. Ce bord est souvent appelé cercle d’incertitude.

A En particulier, 'ensemble de définition de la somme contient toujours I'intervalle ouvert de conver-
gence, mais il n’y a pas forcément égalité car la série peut converger en des points situés au bord.

x?’b
Exemple 9 — Déterminer l'intervalle ouvert de convergence de Z — puis son ensemble de définition.
n

2 Détermination du rayon de convergence

2.1 Tests de valeurs avec la définition
En utilisant la définition 4 du rayon de convergence ou le lien avec la convergence de la série (thm. 6),
on remarque que :

— si zp € C est tel que la suite (ap2{ ), est bornée ou la série Y a2 converge, alors zg est dans le disque
ouvert de convergence ou sur le cercle d’incertitude donc |z9| < R;

— si au contraire zg € C est tel que la suite (a,z{), n’est pas bornée ou la série Y a,z{ diverge, alors zp
est a l'extérieur du disque ouvert de convergence ou sur le cercle d’incertitude donc R < |zg].
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Exemple 10 — Retrouver ainst le rayon de convergence de Z =
n

2.2 Regles de comparaison

[ Proposition 11 — Comparaison des rayons de convergence }

Soient Z anz" et Z b, z" deux séries entiéres de rayons de convergence respectifs R, et Rp.
1. Si a, = O(by,) alors R, > Ry (le résultat s’applique en particulier lorsque a,, = o(by)) ;
2. Siap, ~ by, alors R, = Ry.

Démonstration. 1. On se rameéne & une comparaison des séries numériques »_|a,z"| et > |b,2"|.
2. ay ~ by, donne a, = O(b,) et b, = O(ay,) et on applique deux fois le premier point. a

A En particulier, si pour tout n assez grand, |a,| < |by|, alors R, > Ry, (attention au sens des inégalités).

n+ cos(n) ,

Exemple 12 — Rayon de convergence de Z ﬁz .
n?+n

2.3 Utilisation de la regle de d’Alembert

[ Théoréme 13 — Reégle de d’Alembert pour les séries entieres }

Soit g anz" une série entiere telle que a, # 0 a partir d'un certain rang.

1
Si [@n+1] ——— ¢ €[0;+00], alors R = 7 (avec les conventions « == =0 » et « & = 400 »).

‘an’ n—-+o0o +

Démonstration. C’est une conséquence directe de la regle de d’Alembert pour les séries numériques. u

A On croise fréquemment des séries lacunaires, c’est-a-dire des séries pour lesquelles une infinité de a,,
sont nuls (par exemple tous les termes impairs). Dans ce cas on reviendra a la régle de d’Alembert pour les
séries numériques pour déterminer le rayon de convergence.
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z2n

(n+1)4n

Exemple 14 — Rayon de CV de Z Exemple 15 — Rayon de CV de Z

n+5
3n #°,

Corollaire 16 — Un rayon de convergence usuel ]

Pour tout a € R, la série entiere E nz™ a un rayon de convergence égal a 1.

(n+1)

ne n—-+o00

Démonstration. 1 donc d’apres la régle de d’Alembert, le rayon vaut % =1. d

2.4 Opérations et rayon de convergence

[ Proposition 17 — Combinaison linéaire de séries entiéres }

Soient Z anz" et Z b,z" deux séries entiéres de rayons de convergence respectifs R, et Rp.
1. Pour tout scalaire X # 0, R(Z )\anz") = R,.

2. Le rayon de convergence Rg de la somme Z(an + byp)2" vérifie Rg > min(R,, Rp) avec égalité si
R, # Ry.

Démonstration. 1. (Aapr™)y, est bornée ssi (a,r™), est.
2. Pour |z| < min(Rg, Rp), > anz™ et > by2" convergent, d’ou I'inégalité par linéarité et thm. 6. Si R, < Ry,
pour z tel que R, < |z| < Ry, on justifie que > (a, + b,)z" diverge et via thm. 6, on obtient Rg > R,. Q1
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[ Proposition 18 — Produit de Cauchy de séries entieres ]

Soient Z a, 2" et Z b, 2" deux séries entieres de rayons de convergence respectifs R, et Rp.

On rappelle que le produit de Cauchy de ces deux séries est la série entiére Z cp 2" ol

n
Cp = Z aibj = Z akbn,k.
k=0

On note R, son rayon de convergence.
Alors R, > min(R,, Ryp). De plus, pour tout z € C tel que |z| < min(R,, R), on a

+oo +oo +oo
(Z anz”> X (Z bnz”> = Z 2.
n=0 n=0 n=0

Démonstration. On se rameéne au cas d’un produit de Cauchy de séries numériques. d

[ Proposition 19 — Séries dérivée et primitive }

Les séries entiéres g anx", E na,z" ! et E

Gnp ~
n 1:L‘"'H ont méme rayon de convergence.
n

Démonstration. D’ une part, comme |a,| < n|a,|, d’aprés prop. 11, on a R’ < R. D’autre part, on montre
que napz™ = O(apr™) ol |z| < r < R pour obtenir I'autre inégalité. a

3 Régularité de la somme d’une série de la variable réelle

Dans ce paragraphe, on s’intéresse aux séries entiéres d’une variable réelle a valeurs dans K = R ou C.

On considere ainsi Z a,z" une telle série entiere avec = une variable réelle et (a,), € CN. On note R
son rayon de convergence et on suppose R > 0 pour que U'intervalle ouvert de convergence |—R ; R[ soit non
vide. On va s’intéresser aux propriétés de la fonction somme :

f: ]-R;R[ — C

“+oo
x — Z anx"
n=0

[ Proposition 20 — Convergence normale sur tout segment ]

Une série entiere converge normalement sur tout segment inclus dans son intervalle ouvert de conver-
gence.

Démonstration. En notant, f,: z +— a,z", on majore | fulloo, (a4 Par le terme général d'une série qui est
absolument convergente d’apres le thm. 6. d

3.1 Continuité

[ Proposition 21 — Continuité sur I'intervalle ouvert de convergence J

‘ La somme f d’une série entiére est continue sur U'intervalle ouvert de convergence |—R; R|.

Démonstration. Théoreme de continuité des séries de fonctions avec CVU sur tout segment assurée par la
proposition précédente. ad

A On n’a aucune information sur ce qui se passe au bord. D’ailleurs « ’étude des propriétés de la somme
au bord de l'intervalle ouvert de convergence n’est pas un objectif du programme ».

PC - Chrestien de Troyes 6/12 2025-2026



3.2 Primitivation

[ Théoréme 22 — Primitivation }

Soit E a,x™ est une série entiere de rayon de convergence R > 0 et de somme f.

- AN Gn, . . e
La série entiere E - 11’”“ a aussi pour rayon de convergence R et sa somme F' est I'unique primitive
n

de f qui vérifie F(0) = 0. Autrement dit,

“+00

z [t 1o g
a
Y € —R;R,/ > ant” dt:E:/ ant"dt =y —"—ag"

Démonstration. Prop. 19 pour le rayon de convergence. Ensuite, théoreme d’intégration d’une série de

fonctions qui converge uniformément sur un segment. d
+00  n
Exemple 23 — A partir de la série géométrique, déterminer la somme de Z —
n=1 n
+o0 1

Exemple 24 — Convergence et valeur de

——
) n2
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3.3 Classe C*®

[ Théoréme 25 — Dérivation terme a terme }

Soit Z anx™ est une série entiere de rayon de convergence R > 0 et de somme f.
La fonction somme f est de classe C* sur |-R; R|.
De plus, pour tout = € |—R; R[ et tout p € N,

®) +o0 +o0o n!
fP)=> nn—1)---(n—p+Dapa" P =Y ———a" P
)= S nln= 1) ) S o

En particulier, les dérivées de f sont des sommes de séries entiéres ayant toutes pour rayon de conver-
gence R.

Démonstration. Le rayon de convergence est donné par prop. 19. Ensuite, application du théoreme de

dérivation d’une série de fonctions avec convergence uniforme sur tout segment via prop. 20. u
1 =X
Exemple 26 — Montrer que Vx € R tel que |z| < 1, —— = Z(n +1)z".

(1 B I)2 n=0

Remarque. D’apres le théoreme précédent, pour montrer qu’une fonction est de classe C*°, on peut chercher
a montrer que c’est la somme d’une série entiere.
A 11 existe des fonctions C* qui ne peuvent pas s’écrire comme somme d’une série entiére (voir TD).

[ Corollaire 27 — Expression des coefficients a ’aide des dérivées }

Soit g anpx™ est une série entiere de rayon de convergence R > 0 et de somme f.

F(0)

n!

Alors pour tout n € N, a,, =

Démonstration. Evaluer en z = 0 la relation du théoréme précédent. u
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six#0

) est de classe C* sur R puis donner la
stz =0

e’ —1
Exemple 28 — Justifier que la fonction g: x — {1 L

valeur de g™ (0) pour tout n € N.

4 Développements en série entiere

[ Définition 29 — Fonction développable en série entiere J

Soit f une fonction définie sur un intervalle |—r;r[ avec r > 0.
On dit que f est développable en série entiére sur |—r;r[ s’il existe une série entiére Zanx" dont la
somme est f sur |—r;r[, i.e.

+00
Vo € |—r;r], f(x) = Z anz".
n=0

On dit que f est développable en série entiere au voisinage de 0 s’il existe un réel r > 0 tel que f est
développable en série entiere sur |—r;r].

Exemple 30 — Justifier que la fonction x — 5 est développable en série entiére au voisinage de 0

et préciser le rayon de convergence de ce développement.

Proposition 31 — Structure de I’ensemble des fonctions DSE J

)

L’ensemble des fonctions développables en série entiére sur |—r;r[ est un sous-espace vectoriel de
C*>®(]—r;r[,K) stable par produit, primitivation et dérivation.

Démonstration. Reformulation des prop. 17, 18 et 19. u
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[ Proposition 32 — Unicité du développement en série entiere ]

“+o00 —+00
Soient Z anx" et Z bpz™ deux séries entieres. S’il existe r > 0 tel que Va € |—r; 7], Z anz" = Z b,x",

alors pour tout n € N, a,, = b,,.

Démonstration. C’est une conséquence de ’expression des coefficients en fonction des dérivées, cf cor. 27. U

Exemple 33 — Soit f une fonction paire développable en série entiére sur |—r;r| avec r > 0. Montrer
que les coefficients d’indices impairs de ce développement sont nuls.

Remarque. Ce résultat d’unicité est utile pour déterminer les solutions développables en série entiere d’une
équation différentielles (voir TD).

4.1 Série de Taylor et formule de Taylor

Définition 34 — Série de Taylor |
Soient R > 0 et f une fonction de classe C* sur |—R; R|.

£™(0)
|

n:

La série entiere 2™ est appelée série de Taylor de f.

D’apres le corollaire 27, c’est 'unique série entiere dont f peut étre la somme au voisinage de 0.
A 11 se peut que I’égalité entre f et sa série de Taylor ne soit valable qu’en 0 (voir TD).

[ Proposition 35 — Formule de Taylor avec reste intégral }

Soit f une fonction de classe C"*! sur |- R; R|. Alors, pour z € |-R; R[, on a

k! n!

n (k) T (g — )"
fa) = 3 Ly [PEZ oy
k=0

Plus généralement, si f est de classe C"*! sur le segment [a ;b] alors

") (g —fn
HOEDY ! k'( )(b—a)k+/b bt n,t) (@) dt.
k=0 : “ :

Démonstration. Par récurrence avec une IPP. (]

[ Corollaire 36 — Inégalité de Taylor-Lagrange ]

Soit f une fonction de classe C"*! sur |- R; R[. Alors, pour z € |-R; R[, on a

L R
m”f( il

oo, [O5z]"

Démonstration. Vue en PCSI : conséquence de la formule de Taylor avec reste intégral en utilisant I’inégalité
triangulaire. d
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Remarque. Ces deux formules de Taylor sont d’une autre nature que celle de Taylor-Young. En effet cette
derniére est seulement un résultat local, utile pour obtenir des limites lorsque x — 0 avec n fixé (penser aux
développements limités). A contrario, les deux formules ci-dessus donnent un résultat global (valable pour
tout 2 dans un intervalle) et permettent d’obtenir des limites lorsque n — 400 avec x fixé.

4.2 Développements usuels

A partir de I’exponentielle

d
Développement en série entiére Rayon de Démonstration
convergence
+00 _n
T _ il
e’ = Z o ~+00 Formule de Taylor
n=0
+o0 2 )
cos(x) = Z(—l)”@n)' +00 Re(e'?)
n=0
Jio p2n+l )
sin(z) = Y (—=1)" +00 Im(e'*)
= (2n +1)!
+oo | 2n T —x
T e” +e
ch(z) = Z o)l +00 ch(x) = )
n=0
+oo _on41 P
x e’ —e
h(z) = h(x) =
sh(z) > Gt 1) +o0 ch(z) 5
A partir de la série géométrique
Développement en série entiere Rayon de Démonstration
convergence
1 +0o0o
T = Z x" 1 Série géométrique
n=0
1 =
T3z = Z(—l)”:p” 1 X~ —x
n=0
400 pntl +00 "
In(l—z) = — Z: o Z - 1 Primitivation de =L
n=0 n=1
400 xn—&—l +o00 . "
In(1+x) = —1)" = -1 — 1 T~ —
(+2) = S0 = S0
+00 2n+1 / 1
x arctan’(z) = ——
— 1) 1 Ltz
arctan(z) nz:%( ) 2n+1 puis primitivation
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Un dernier un peu a part
Pour a ¢ N :
Rayon de Démonstration

Développement en série entiere
convergence

+oo
ala—=1)---(a—n+1)
1 =1 " 1
(1+ ) +nz::1 = T

+o0 /n—1 2"
= 1+Z<H(a—k)>n!

n=1 \k=0

5 Séries géométrique et exponentielle complexe

Via une équa. diff.

[ Proposition 37 — Continuité sur le disque ouvert de convergence ]

Soit g a, 2" une série entiere de la variable complexe z.
Sa somme est continue sur le disque ouvert de convergence.

Démonstration. Admis. a
[ Proposition 38 — Développements usuels ]
1 =
o Vz € C tel 1, — = "
z el que |z] < 1 Z:z
n=0
400 _n
z ol
e VzeC, e _Zn!'
n=0
Démonstration. 1. Série géométrique.
2. Formule de Taylor avec reste intégral sur ¢t € R s e!* avec z € C fixé a
12/12 2025-2026
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