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1 Définition et rayon de convergence

1.1 Qu’est ce qu’une série entière ?

Définition 1 – Série entière

Soit (an)n∈N une suite de nombres réels ou complexes.
On appelle série entière de la variable z ∈ C la série de fonctions

∑

fn où, pour n ∈ N, fn : z 7→ anzn.

En pratique, on notera (abusivement)
∑

anzn pour désigner une série entière.

Exemple 2 – Série entière ou pas

Lesquelles sont des séries entières parmi :

∑

zn,
∑ 1

n
z2n,

∑

n!zn/2,
∑ 1

nn
z3n+1,

∑ n

zn
,
∑

sin(n)zn2

.

1.2 Rayon de convergence

Proposition 3 – Lemme d’Abel

Soit z0 ∈ C. Si la suite
(

anzn
0

)

n
est bornée alors, pour tout nombre complexe z tel que |z| < |z0|, la série

∑

anzn est absolument convergente.

Démonstration. En notant M un majorant de (anzn
0 )n, on montre que |anzn| ⩽ M

∣

∣

z
z0

∣

∣

n et on conclut par
comparaison à une série géométrique convergente. q
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Définition 4 – Rayon de convergence

On appelle rayon de convergence de la série entière
∑

anzn, le nombre réel ou infini :

R = R

(

∑

anzn
)

= sup{r ∈ R+ | (anrn)n est bornée} ∈ [0 ; +∞].

Remarque. En particulier, les séries
∑

anzn et
∑

|an|zn ont même rayon de convergence. Cela peut être
utile pour se ramener à des coefficients réels (positifs).

Exemple 5 – Rayon de convergence de la série entière
∑

zn.

1.3 Lien avec la convergence

Théorème 6 – Rayon de convergence et nature de la série

1. Si |z| < R, alors la série
∑

anzn converge absolument.

2. Si |z| > R, alors la série
∑

anzn diverge grossièrement.

Démonstration. 1. Si |z| < R, considérer r = |z|+R
2 et utiliser le lemme d’Abel.

2. Si |z| > R, utiliser la définition de R pour montrer que anzn

�
�
�
�H

H
H
H

−−−−−→
n→+∞

0. q

O

?

DVG

CVA
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Exemple 7 – Rayon de convergence de
∑ xn

n!
et de

∑ zn

3n
.

Définition 8 – Disque ouvert et intervalle ouvert de convergence

Soit
∑

anzn une série entière de rayon de convergence R.
L’intervalle réel ]−R ; R[ est appelé intervalle ouvert de convergence.
L’ensemble {z ∈ C | |z| < R} est appelé disque ouvert de convergence.

D’après la proposition précédente, une série entière converge absolument sur son intervalle / disque
ouvert de convergence. En revanche, tout peut se passer au bord, c’est-à-dire en un nombre z tel que
|z| = R. Ce bord est souvent appelé cercle d’incertitude.

� En particulier, l’ensemble de définition de la somme contient toujours l’intervalle ouvert de conver-
gence, mais il n’y a pas forcément égalité car la série peut converger en des points situés au bord.

Exemple 9 – Déterminer l’intervalle ouvert de convergence de
∑ xn

n
puis son ensemble de définition.

2 Détermination du rayon de convergence

2.1 Tests de valeurs avec la définition

En utilisant la définition 4 du rayon de convergence ou le lien avec la convergence de la série (thm. 6),
on remarque que :

— si z0 ∈ C est tel que la suite (anzn
0 )n est bornée ou la série

∑

anzn
0 converge, alors z0 est dans le disque

ouvert de convergence ou sur le cercle d’incertitude donc |z0| ⩽ R ;

— si au contraire z0 ∈ C est tel que la suite (anzn
0 )n n’est pas bornée ou la série

∑

anzn
0 diverge, alors z0

est à l’extérieur du disque ouvert de convergence ou sur le cercle d’incertitude donc R ⩽ |z0|.
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Exemple 10 – Retrouver ainsi le rayon de convergence de
∑ zn

n
.

2.2 Règles de comparaison

Proposition 11 – Comparaison des rayons de convergence

Soient
∑

anzn et
∑

bnzn deux séries entières de rayons de convergence respectifs Ra et Rb.

1. Si an = O(bn) alors Ra ⩾ Rb (le résultat s’applique en particulier lorsque an = o(bn)) ;

2. Si an ∼ bn alors Ra = Rb.

Démonstration. 1. On se ramène à une comparaison des séries numériques
∑

|anzn| et
∑

|bnzn|.
2. an ∼ bn donne an = O(bn) et bn = O(an) et on applique deux fois le premier point. q

� En particulier, si pour tout n assez grand, |an| ⩽ |bn|, alors Ra ⩾ Rb (attention au sens des inégalités).

Exemple 12 – Rayon de convergence de
∑ n + cos(n)

n2 + n + 1
zn.

2.3 Utilisation de la règle de d’Alembert

Théorème 13 – Règle de d’Alembert pour les séries entières

Soit
∑

anzn une série entière telle que an ̸= 0 à partir d’un certain rang.

Si
|an+1|

|an|
−−−−−→
n→+∞

ℓ ∈ [0 ; +∞], alors R =
1

ℓ
(avec les conventions « 1

+∞ = 0 » et « 1
0 = +∞ »).

Démonstration. C’est une conséquence directe de la règle de d’Alembert pour les séries numériques. q

� On croise fréquemment des séries lacunaires, c’est-à-dire des séries pour lesquelles une infinité de an

sont nuls (par exemple tous les termes impairs). Dans ce cas on reviendra à la règle de d’Alembert pour les
séries numériques pour déterminer le rayon de convergence.
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Exemple 14 – Rayon de CV de
∑ n + 5

3n
zn. Exemple 15 – Rayon de CV de

∑ z2n

(n + 1)4n
.

Corollaire 16 – Un rayon de convergence usuel

Pour tout ³ ∈ R, la série entière
∑

nαxn a un rayon de convergence égal à 1.

Démonstration.
(n + 1)α

nα
−−−−−→
n→+∞

1 donc d’après la règle de d’Alembert, le rayon vaut 1
1 = 1. q

2.4 Opérations et rayon de convergence

Proposition 17 – Combinaison linéaire de séries entières

Soient
∑

anzn et
∑

bnzn deux séries entières de rayons de convergence respectifs Ra et Rb.

1. Pour tout scalaire ¼ ̸= 0, R

(

∑

¼anzn
)

= Ra.

2. Le rayon de convergence RS de la somme
∑

(an + bn)zn vérifie RS ⩾ min(Ra, Rb) avec égalité si
Ra ̸= Rb.

Démonstration. 1. (¼anrn)n est bornée ssi (anrn)n l’est.
2. Pour |z| < min(Ra, Rb),

∑

anzn et
∑

bnzn convergent, d’où l’inégalité par linéarité et thm. 6. Si Ra < Rb,
pour z tel que Ra < |z| < Rb, on justifie que

∑

(an + bn)zn diverge et via thm. 6, on obtient RS ⩾ Ra. q
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Proposition 18 – Produit de Cauchy de séries entières

Soient
∑

anzn et
∑

bnzn deux séries entières de rayons de convergence respectifs Ra et Rb.

On rappelle que le produit de Cauchy de ces deux séries est la série entière
∑

cnzn où

cn =
∑

i+j=n

aibj =
n
∑

k=0

akbn−k.

On note Rc son rayon de convergence.
Alors Rc ⩾ min(Ra, Rb). De plus, pour tout z ∈ C tel que |z| < min(Ra, Rb), on a

(

+∞
∑

n=0

anzn

)

×

(

+∞
∑

n=0

bnzn

)

=
+∞
∑

n=0

cnzn.

Démonstration. On se ramène au cas d’un produit de Cauchy de séries numériques. q

Proposition 19 – Séries dérivée et primitive

Les séries entières
∑

anxn,
∑

nanxn−1 et
∑ an

n + 1
xn+1 ont même rayon de convergence.

Démonstration. D’une part, comme |an| ⩽ n|an|, d’après prop. 11, on a R′ ⩽ R. D’autre part, on montre
que nanxn = O(anrn) où |x| < r < R pour obtenir l’autre inégalité. q

3 Régularité de la somme d’une série de la variable réelle

Dans ce paragraphe, on s’intéresse aux séries entières d’une variable réelle à valeurs dans K = R ou C.
On considère ainsi

∑

anxn une telle série entière avec x une variable réelle et (an)n ∈ C
N. On note R

son rayon de convergence et on suppose R > 0 pour que l’intervalle ouvert de convergence ]−R ; R[ soit non
vide. On va s’intéresser aux propriétés de la fonction somme :

f : ]−R ; R[ −→ C

x 7−→
+∞
∑

n=0

anxn

.

Proposition 20 – Convergence normale sur tout segment

Une série entière converge normalement sur tout segment inclus dans son intervalle ouvert de conver-
gence.

Démonstration. En notant, fn : x 7→ anxn, on majore ∥fn∥∞, [a;b] par le terme général d’une série qui est
absolument convergente d’après le thm. 6. q

3.1 Continuité

Proposition 21 – Continuité sur l’intervalle ouvert de convergence

La somme f d’une série entière est continue sur l’intervalle ouvert de convergence ]−R ; R[.

Démonstration. Théorème de continuité des séries de fonctions avec CVU sur tout segment assurée par la
proposition précédente. q

� On n’a aucune information sur ce qui se passe au bord. D’ailleurs « l’étude des propriétés de la somme
au bord de l’intervalle ouvert de convergence n’est pas un objectif du programme ».
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3.2 Primitivation

Théorème 22 – Primitivation

Soit
∑

anxn est une série entière de rayon de convergence R > 0 et de somme f .

La série entière
∑ an

n + 1
xn+1 a aussi pour rayon de convergence R et sa somme F est l’unique primitive

de f qui vérifie F (0) = 0. Autrement dit,

∀x ∈ ]−R ; R[,

∫ x

0

(

+∞
∑

n=0

antn

)

dt =
+∞
∑

n=0

∫ x

0
antn dt =

+∞
∑

n=0

an

n + 1
xn+1.

Démonstration. Prop. 19 pour le rayon de convergence. Ensuite, théorème d’intégration d’une série de
fonctions qui converge uniformément sur un segment. q

Exemple 23 – À partir de la série géométrique, déterminer la somme de
+∞
∑

n=1

xn

n
.

Exemple 24 – Convergence et valeur de
+∞
∑

n=1

1

n2n
.
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3.3 Classe C∞

Théorème 25 – Dérivation terme à terme

Soit
∑

anxn est une série entière de rayon de convergence R > 0 et de somme f .
La fonction somme f est de classe C∞ sur ]−R ; R[.
De plus, pour tout x ∈ ]−R ; R[ et tout p ∈ N,

f (p)(x) =
+∞
∑

n=p

n(n − 1) · · · (n − p + 1)anxn−p =
+∞
∑

n=p

n!

(n − p)!
xn−p.

En particulier, les dérivées de f sont des sommes de séries entières ayant toutes pour rayon de conver-
gence R.

Démonstration. Le rayon de convergence est donné par prop. 19. Ensuite, application du théorème de
dérivation d’une série de fonctions avec convergence uniforme sur tout segment via prop. 20. q

Exemple 26 – Montrer que ∀x ∈ R tel que |x| < 1,
1

(1 − x)2
=

+∞
∑

n=0

(n + 1)xn.

Remarque. D’après le théorème précédent, pour montrer qu’une fonction est de classe C∞, on peut chercher
à montrer que c’est la somme d’une série entière.

� Il existe des fonctions C∞ qui ne peuvent pas s’écrire comme somme d’une série entière (voir TD).

Corollaire 27 – Expression des coefficients à l’aide des dérivées

Soit
∑

anxn est une série entière de rayon de convergence R > 0 et de somme f .

Alors pour tout n ∈ N, an =
f (n)(0)

n!
.

Démonstration. Évaluer en x = 0 la relation du théorème précédent. q
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Exemple 28 – Justifier que la fonction g : x 7→

{

ex −1
x si x ̸= 0

1 si x = 0
est de classe C∞ sur R puis donner la

valeur de g(n)(0) pour tout n ∈ N.

4 Développements en série entière

Définition 29 – Fonction développable en série entière

Soit f une fonction définie sur un intervalle ]−r ; r[ avec r > 0.
On dit que f est développable en série entière sur ]−r ; r[ s’il existe une série entière

∑

anxn dont la
somme est f sur ]−r ; r[, i.e.

∀x ∈ ]−r ; r[, f(x) =
+∞
∑

n=0

anxn.

On dit que f est développable en série entière au voisinage de 0 s’il existe un réel r > 0 tel que f est
développable en série entière sur ]−r ; r[.

Exemple 30 – Justifier que la fonction x 7→
1

2 − x
est développable en série entière au voisinage de 0

et préciser le rayon de convergence de ce développement.

Proposition 31 – Structure de l’ensemble des fonctions DSE

L’ensemble des fonctions développables en série entière sur ]−r ; r[ est un sous-espace vectoriel de
C∞
(

]−r ; r[,K
)

stable par produit, primitivation et dérivation.

Démonstration. Reformulation des prop. 17, 18 et 19. q
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Proposition 32 – Unicité du développement en série entière

Soient
∑

anxn et
∑

bnxn deux séries entières. S’il existe r > 0 tel que ∀x ∈ ]−r ; r[,
+∞
∑

n=0

anxn =
+∞
∑

n=0

bnxn,

alors pour tout n ∈ N, an = bn.

Démonstration. C’est une conséquence de l’expression des coefficients en fonction des dérivées, cf cor. 27. q

Exemple 33 – Soit f une fonction paire développable en série entière sur ]−r ; r[ avec r > 0. Montrer
que les coefficients d’indices impairs de ce développement sont nuls.

Remarque. Ce résultat d’unicité est utile pour déterminer les solutions développables en série entière d’une
équation différentielles (voir TD).

4.1 Série de Taylor et formule de Taylor

Définition 34 – Série de Taylor

Soient R > 0 et f une fonction de classe C∞ sur ]−R ; R[.

La série entière
∑ f (n)(0)

n!
xn est appelée série de Taylor de f .

D’après le corollaire 27, c’est l’unique série entière dont f peut être la somme au voisinage de 0.
� Il se peut que l’égalité entre f et sa série de Taylor ne soit valable qu’en 0 (voir TD).

Proposition 35 – Formule de Taylor avec reste intégral

Soit f une fonction de classe Cn+1 sur ]−R ; R[. Alors, pour x ∈ ]−R ; R[, on a

f(x) =
n
∑

k=0

f (k)(0)

k!
xk +

∫ x

0

(x − t)n

n!
f (n+1)(t) dt.

Plus généralement, si f est de classe Cn+1 sur le segment [a ; b] alors

f(b) =
n
∑

k=0

f (k)(a)

k!
(b − a)k +

∫ b

a

(b − t)n

n!
f (n+1)(t) dt.

Démonstration. Par récurrence avec une IPP. q

Corollaire 36 – Inégalité de Taylor-Lagrange

Soit f une fonction de classe Cn+1 sur ]−R ; R[. Alors, pour x ∈ ]−R ; R[, on a

∣

∣

∣

∣

∣

f(x) −
n
∑

k=0

f (k)(0)

k!
xk

∣

∣

∣

∣

∣

⩽
|x|n+1

(n + 1)!

∥

∥f (n+1)
∥

∥

∞, [0;x]
.

Démonstration. Vue en pcsi : conséquence de la formule de Taylor avec reste intégral en utilisant l’inégalité
triangulaire. q

PC - Chrestien de Troyes 10/12 2025–2026



Remarque. Ces deux formules de Taylor sont d’une autre nature que celle de Taylor-Young. En effet cette
dernière est seulement un résultat local, utile pour obtenir des limites lorsque x → 0 avec n fixé (penser aux
développements limités). A contrario, les deux formules ci-dessus donnent un résultat global (valable pour
tout x dans un intervalle) et permettent d’obtenir des limites lorsque n → +∞ avec x fixé.

4.2 Développements usuels

À partir de l’exponentielle

Développement en série entière
Rayon de
convergence

Démonstration

ex =
+∞
∑

n=0

xn

n!
+∞ Formule de Taylor

cos(x) =
+∞
∑

n=0

(−1)n x2n

(2n)!
+∞ Re

(

eix
)

sin(x) =
+∞
∑

n=0

(−1)n x2n+1

(2n + 1)!
+∞ Im

(

eix
)

ch(x) =
+∞
∑

n=0

x2n

(2n)!
+∞ ch(x) =

ex + e−x

2

sh(x) =
+∞
∑

n=0

x2n+1

(2n + 1)!
+∞ ch(x) =

ex − e−x

2

À partir de la série géométrique

Développement en série entière
Rayon de
convergence

Démonstration

1

1 − x
=

+∞
∑

n=0

xn 1 Série géométrique

1

1 + x
=

+∞
∑

n=0

(−1)nxn 1 x⇝ −x

ln(1 − x) = −
+∞
∑

n=0

xn+1

n + 1
= −

+∞
∑

n=1

xn

n
1 Primitivation de −1

1−x

ln(1 + x) =
+∞
∑

n=0

(−1)n xn+1

n + 1
=

+∞
∑

n=1

(−1)n−1 xn

n
1 x⇝ −x

arctan(x) =
+∞
∑

n=0

(−1)n x2n+1

2n + 1
1

arctan′(x) = 1
1+x2

puis primitivation
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Un dernier un peu à part

Pour ³ /∈ N :

Développement en série entière
Rayon de
convergence

Démonstration

(1 + x)α = 1 +
+∞
∑

n=1

³(³ − 1) · · · (³ − n + 1)

n!
xn 1 Via une équa. diff.

= 1 +
+∞
∑

n=1

(

n−1
∏

k=0

(³ − k)

)

xn

n!

5 Séries géométrique et exponentielle complexe

Proposition 37 – Continuité sur le disque ouvert de convergence

Soit
∑

anzn une série entière de la variable complexe z.
Sa somme est continue sur le disque ouvert de convergence.

Démonstration. Admis. q

Proposition 38 – Développements usuels

• ∀z ∈ C tel que |z| < 1,
1

1 − z
=

+∞
∑

n=0

zn.

• ∀z ∈ C, ez =
+∞
∑

n=0

zn

n!
.

Démonstration. 1. Série géométrique.
2. Formule de Taylor avec reste intégral sur t ∈ R 7→ etz avec z ∈ C fixé. q
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